Degradation of 2,3-diethyl-5-methylpyrazine by a newly discovered bacterium, Mycobacterium sp. strain DM-11.

نویسندگان

  • Sugima Rappert
  • Kathrin Caroline Botsch
  • Stephanie Nagorny
  • Wittko Francke
  • Rudolf Müller
چکیده

A bacterium was isolated from the waste gas treatment plant at a fishmeal processing company on the basis of its capacity to use 2,3-diethyl-5-methylpyrazine (DM) as a sole carbon and energy source. The strain, designated strain DM-11, grew optimally at 25 degrees C and had a doubling time of 29.2 h. The strain did not grow on complex media like tryptic soy broth, Luria-Bertani broth, or nutrient broth or on simple carbon sources like glucose, acetate, oxoglutarate, succinate, or citrate. Only on Löwenstein-Jensen medium was growth observed. The 16S rRNA gene sequence of strain DM-11 showed the highest similarity (96.2%) to Mycobacterium poriferae strain ATCC 35087T. Therefore, strain DM-11 merits recognition as a novel species within the genus Mycobacterium. DM also served as a sole nitrogen source for the growth of strain DM-11. The degradation of DM by strain DM-11 requires molecular oxygen. The first intermediate was identified as 5,6-diethyl-2-hydroxy-3-methylpyrazine (DHM). Its disappearance was accompanied by the release of ammonium into the culture medium. No other metabolite was detected. We conclude that ring fission occurred directly after the formation of DHM and ammonium was eliminated after ring cleavage. Molecular oxygen was essential for the degradation of DHM. The expression of enzymes involved in the degradation of DM and DHM was regulated. Only cells induced by DM or DHM converted these compounds. Strain DM-11 also grew on 2-ethyl-5(6)-methylpyrazine (EMP) and 2,3,5-trimethylpyrazine (TMP) as a sole carbon, nitrogen, and energy source. In addition, the strain converted many pyrazines found in the waste gases of food industries cometabolically.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradation of Phenol by Newly Isolated Phenol-degrading Bacterium Ralstonia sp. Strain PH-S1

A newly phenol-degrading bacterium, identified as Ralstonia sp. strain PH-S1, was isolated from oil-contaminated soil in Khark Island. It was isolated by a multistep enrichment and screening technique on mineral medium (MM) containing 100 mg.l-1 of phenol as the sole source of carbon. The bacterium was able to degrade up to 1100 mg.l-1 of phenol but the cell growth decreased with higher concent...

متن کامل

Isolation and Partial Characterization of a Bacterial Thermostable Polymethyl Galacturonase from a Newly Isolated Bacillus sp. strain BR1390

Background: Pectinases are pectin degrading class of enzymes including polygalacturonase (PG), polymethyl galacturonase (PMG), pectate lyase (PEL), and pectin esterase (PE) that are commonly used in processes involving the degradation of plant materials, such as speeding up the extraction of fruit juices. Objectives: A highly methylated pectin degrading bacterium from soil covered with fruit wa...

متن کامل

Decolorization of Methyl Orange (As a Model Azo Dye) by the Newly Discovered Bacillus Sp

A bacterial strain (strain PS) was isolated from the textile effluents carrying Serilene Black BNFS® (C.I. Disp. Blk. Mix) disperse dye. The isolate was able to decolorize the dye without the need for any exogenous carbon source. Full sequencing of its 16S rRNA indicated that Bacillus sp strain PS is related to Bacillus cereus groups.  Silica- gel-thin layer chromatography of Ser...

متن کامل

Isolation and Identification of a Sulfide/Sulfoxide Monooxygenase Gene from a Newly Isolated Rhodococcus Sp. Strain FMF

Rhodococcus FMF is a gram-positive bacterium isolated for the first time from soil samples of Tabriz refinery in Iran. This microorganism is able to catabolize dibenzothiophene to 2-hydroxybiphenyl and inorganic sulfur without the destruction of carbon-carbon bonds. Three structural genes, dszA, dszB, and dszC have been characterized and shown to be responsible for this phenotype. In this work,...

متن کامل

Degradation of anthracene by Mycobacterium sp. strain LB501T proceeds via a novel pathway, through o-phthalic acid.

Mycobacterium sp. strain LB501T utilizes anthracene as a sole carbon and energy source. We analyzed cultures of the wild-type strain and of UV-generated mutants impaired in anthracene utilization for metabolites to determine the anthracene degradation pathway. Identification of metabolites by comparison with authentic standards and transient accumulation of o-phthalic acid by the wild-type stra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 72 2  شماره 

صفحات  -

تاریخ انتشار 2006